Search results
Results From The WOW.Com Content Network
Following elution, the protein readily binds DNA, indicating the protein's high affinity for DNA. Histone-like proteins were unknown to be present in bacteria until similarities between eukaryotic histones and the HU-protein were noted, particularly because of the abundancy, basicity, and small size of both of the proteins. [8]
Protein–DNA interactions occur when a protein binds a molecule of DNA, often to regulate the biological function of DNA, usually the expression of a gene. Among the proteins that bind to DNA are transcription factors that activate or repress gene expression by binding to DNA motifs and histones that form part of the structure of DNA and bind ...
DnaA is a protein that activates initiation of DNA replication in bacteria. [1] Based on the Replicon Model, a positively active initiator molecule contacts with a particular spot on a circular chromosome called the replicator to start DNA replication. [2] It is a replication initiation factor which promotes the unwinding of DNA at oriC. [1]
Structural proteins that bind DNA are well-understood examples of non-specific DNA-protein interactions. Within chromosomes, DNA is held in complexes with structural proteins. These proteins organize the DNA into a compact structure called chromatin. In eukaryotes, this structure involves DNA binding to a complex of small basic proteins called ...
Structure of a gene regulatory network Control process of a gene regulatory network. A gene (or genetic) regulatory network (GRN) is a collection of molecular regulators that interact with each other and with other substances in the cell to govern the gene expression levels of mRNA and proteins which, in turn, determine the function of the cell.
SMC proteins are conserved from bacteria to humans. [14] [15] Most bacteria have a single SMC protein in individual species that forms a homodimer.[16] [17] Recently SMC proteins have been shown to aid the daughter cells DNA at the origin of replication to guarantee proper segregation.
Regulation of gene expression by a hormone receptor Diagram showing at which stages in the DNA-mRNA-protein pathway expression can be controlled. Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA).
The protein protein interactions are displayed in a signed network that describes what type of interactions that are taking place [74] Protein–protein interactions often result in one of the interacting proteins either being 'activated' or 'repressed'. Such effects can be indicated in a PPI network by "signs" (e.g. "activation" or "inhibition").