Search results
Results From The WOW.Com Content Network
Technically, it should be called the principal square root of 2, to distinguish it from the negative number with the same property. Geometrically, the square root of 2 is the length of a diagonal across a square with sides of one unit of length; this follows from the Pythagorean theorem. It was probably the first number known to be irrational. [1]
The square root of 2 was likely the first number proved irrational. [27] The golden ratio is another famous quadratic irrational number. The square roots of all natural numbers that are not perfect squares are irrational and a proof may be found in quadratic irrationals.
Since taking the square root is the same as raising to the power 1 / 2 , the following is also an algebraic expression: 1 − x 2 1 + x 2 {\displaystyle {\sqrt {\frac {1-x^{2}}{1+x^{2}}}}} An algebraic equation is an equation involving polynomials , for which algebraic expressions may be solutions .
The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1.. An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients.
The square root of 2 is irrational, and 3 is rational. is also irrational: if it were equal to , then, by the properties of logarithms, 9 n would be equal to 2 m, but the former is odd, and the latter is even. A more substantial example is the graph minor theorem.
The irrationality exponent or Liouville–Roth irrationality measure is given by setting (,) =, [1] a definition adapting the one of Liouville numbers — the irrationality exponent () is defined for real numbers to be the supremum of the set of such that < | | < is satisfied by an infinite number of coprime integer pairs (,) with >.
A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.
The square root of 2 was the first such number to be proved irrational. Theodorus of Cyrene proved the irrationality of the square roots of non-square natural numbers up to 17, but stopped there, probably because the algebra he used could not be applied to the square root of numbers greater than 17. Euclid's Elements Book 10 is dedicated to ...