Search results
Results From The WOW.Com Content Network
If two variables are uncorrelated, there is no linear relationship between them. Uncorrelated random variables have a Pearson correlation coefficient, when it exists, of zero, except in the trivial case when either variable has zero variance (is a constant). In this case the correlation is undefined.
Students of statistics and probability theory sometimes develop misconceptions about the normal distribution, ideas that may seem plausible but are mathematically untrue. For example, it is sometimes mistakenly thought that two linearly uncorrelated, normally distributed random variables must be statistically independent.
When the errors on x are uncorrelated, the general expression simplifies to =, where = is the variance of k-th element of the x vector. Note that even though the errors on x may be uncorrelated, the errors on f are in general correlated; in other words, even if Σ x {\displaystyle {\boldsymbol {\Sigma }}^{x}} is a diagonal matrix, Σ f ...
Pairwise independent random variables with finite variance are uncorrelated. A pair of random variables X and Y are independent if and only if the random vector (X, Y) with joint cumulative distribution function (CDF) , (,) satisfies , (,) = (),
The observations on the dependent variable are stacked into a column vector y; the observations on each independent variable are also stacked into column vectors, and these latter column vectors are combined into a design matrix X (not denoting a random vector in this context) of observations on the independent variables. Then the following ...
In general, random variables may be uncorrelated but statistically dependent. But if a random vector has a multivariate normal distribution then any two or more of its components that are uncorrelated are independent. This implies that any two or more of its components that are pairwise independent are independent.
In mathematics and statistics, a probability vector or stochastic vector is a vector with non-negative entries that add up to one.. The positions (indices) of a probability vector represent the possible outcomes of a discrete random variable, and the vector gives us the probability mass function of that random variable, which is the standard way of characterizing a discrete probability ...
Example of orthogonal factorial design Orthogonality concerns the forms of comparison (contrasts) that can be legitimately and efficiently carried out. Contrasts can be represented by vectors and sets of orthogonal contrasts are uncorrelated and independently distributed if the data are normal.