Search results
Results From The WOW.Com Content Network
m and n are coprime (also called relatively prime) if gcd(m, n) = 1 (meaning they have no common prime factor). lcm(m, n) (least common multiple of m and n) is the product of all prime factors of m or n (with the largest multiplicity for m or n). gcd(m, n) × lcm(m, n) = m × n. Finding the prime factors is often harder than computing gcd and ...
A twin prime is a prime number that is either 2 less or 2 more than another prime number—for example, either member of the twin prime pair (17, 19) or (41, 43). In other words, a twin prime is a prime that has a prime gap of two. Sometimes the term twin prime is used for a pair of twin primes; an alternative name for this is prime twin or ...
The same prime factor may occur more than once; this example has two copies of the prime factor When a prime occurs multiple times, exponentiation can be used to group together multiple copies of the same prime number: for example, in the second way of writing the product above, 5 2 {\displaystyle 5^{2}} denotes the square or second power of ...
Every pair of congruence relations for an unknown integer x, of the form x ≡ k (mod a) and x ≡ m (mod b), has a solution (Chinese remainder theorem); in fact the solutions are described by a single congruence relation modulo ab. The least common multiple of a and b is equal to their product ab, i.e. lcm(a, b) = ab. [4]
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
≡ 45° ≈ 0.785 398 rad: quadrant: ≡ 90° ≈ 1.570 796 rad: radian (SI unit) rad The angle subtended at the center of a circle by an arc whose length is equal to the circle's radius. One full revolution encompasses 2π radians. = 1 rad sextant: ≡ 60° ≈ 1.047 198 rad: sign: ≡ 30° ≈ 0.523 599 rad
For n ≥ 2, a(n) is the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached; a(n) = −1 if no prime is ever reached. A037274: Undulating numbers: 101, 121, 131, 141, 151, 161, 171, 181, 191, 202, ... A number that has the digit form ababab. A046075: Equidigital numbers
If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4). Continuing this process until every factor is prime is called prime factorization; the result is always unique up to the order of the factors by the prime factorization theorem.