Search results
Results From The WOW.Com Content Network
For such problems, to achieve given accuracy, it takes much less computational time to use an implicit method with larger time steps, even taking into account that one needs to solve an equation of the form (1) at each time step. That said, whether one should use an explicit or implicit method depends upon the problem to be solved.
An implicit function is a function that is defined by an implicit equation, that relates one of the variables, considered as the value of the function, with the others considered as the arguments. [ 1 ] : 204–206 For example, the equation x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0} of the unit circle defines y as an implicit function ...
In numerical analysis, the Runge–Kutta methods (English: / ˈ r ʊ ŋ ə ˈ k ʊ t ɑː / ⓘ RUUNG-ə-KUUT-tah [1]) are a family of implicit and explicit iterative methods, which include the Euler method, used in temporal discretization for the approximate solutions of simultaneous nonlinear equations. [2]
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. It is the most basic explicit method for numerical integration of ordinary differential equations and is the simplest Runge–Kutta ...
The unit circle can be specified as the level curve f(x, y) = 1 of the function f(x, y) = x 2 + y 2.Around point A, y can be expressed as a function y(x).In this example this function can be written explicitly as () =; in many cases no such explicit expression exists, but one can still refer to the implicit function y(x).
In mathematics, an implicit curve is a plane curve defined by an implicit equation relating two coordinate variables, commonly x and y. For example, the unit circle is defined by the implicit equation x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1} .
Clearly the converse holds as well, so that we have an equivalence between implicit and explicit definability. That is, a "property" is explicitly definable with respect to a theory if and only if it is implicitly definable. The theorem does not hold if the condition is restricted to finite models.
In applied physics and engineering, temporal discretization is a mathematical technique for solving transient problems, such as flow problems.. Transient problems are often solved using computer-aided engineering (CAE) simulations, which require discretizing the governing equations in both space and time.