Search results
Results From The WOW.Com Content Network
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Ernst Zermelo, a contributor to modern Set theory, was the first to explicitly formalize set equality in his Zermelo set theory (now obsolete), by his Axiom der Bestimmtheit. [45] Around the turn of the 20th century, mathematics faced several paradoxes and counter-intuitive results.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
The equality equivalence relation is the finest equivalence relation on any set, while the universal relation, which relates all pairs of elements, is the coarsest. The relation " ∼ {\displaystyle \sim } is finer than ≈ {\displaystyle \approx } " on the collection of all equivalence relations on a fixed set is itself a partial order ...
Conversely, the group G acts transitively on the set of pairs of points (p, q) in the unit disk at a fixed hyperbolic distance. Later, partly through the influence of Henri Poincaré , the cross ratio of four complex numbers on a circle was used for hyperbolic metrics.
In set theory, the axiom of extensionality states that two sets are equal if and only if they contain the same elements. In mathematics formalized in set theory, it is common to identify relations—and, most importantly, functions —with their extension as stated above, so that it is impossible for two relations or functions with the same ...
In mathematics, a property is any characteristic that applies to a given set. [1] Rigorously, a property p defined for all elements of a set X is usually defined as a function p: X → {true, false}, that is true whenever the property holds; or, equivalently, as the subset of X for which p holds; i.e. the set {x | p(x) = true}; p is its indicator function.