Search results
Results From The WOW.Com Content Network
Maltose in aqueous solution exhibits mutarotation, because the α and β isomers that are formed by the different conformations of the anomeric carbon have different specific rotations, and in aqueous solutions, these two forms are in equilibrium. Maltose can easily be detected by the Woehlk test or Fearon's test on methylamine. [7] It has a ...
The molecular form C 12 H 22 O 11 (molar mass: 342.29 g/mol, exact mass : 342.116212) may refer to: Disaccharides. Allolactose; Cellobiose; Galactose-alpha-1,3-galactose; Gentiobiose (amygdalose) Isomaltose; Isomaltulose; Kojibiose; Lactose (milk sugar) Lactulose; Laminaribiose; Maltose (malt sugar - cereal) 2α-Mannobiose; 3α-Mannobiose ...
Starch, consisting of two different polymers of glucose, is a readily degradable form of chemical energy stored by cells, and can be converted to other types of energy. [66] Another polymer of glucose is cellulose, which is a linear chain composed of several hundred or thousand glucose units.
This is helpful when converting from condensed formula to another form of structural formula such as skeletal formula or Lewis structures. There are different ways to show the various functional groups in the condensed formulas such as aldehyde as CHO, carboxylic acids as CO 2 H or COOH, esters as CO 2 R or COOR. However, the use of condensed ...
Sucrose, which is nonreducing, does not form an osazone. A typical reaction showing the formation of an osazone. D-glucose reacts with phenylhydrazine to give glucosazone. The same product is obtained from fructose and mannose. General steps in osazone formation
Mannose commonly exists as two different-sized rings, the pyranose (six-membered) form and the furanose (five-membered) form. Each ring closure can have either an alpha or beta configuration at the anomeric position. The chemical rapidly undergoes isomerization among these four forms. [citation needed]
α-Amylase is an enzyme (EC 3.2.1.1; systematic name 4-α-D-glucan glucanohydrolase) that hydrolyses α bonds of large, α-linked polysaccharides, such as starch and glycogen, yielding shorter chains thereof, dextrins, and maltose, through the following biochemical process: [2]
Working from the non-reducing end, β-amylase catalyzes the hydrolysis of the second α-1,4 glycosidic bond, cleaving off two glucose units at a time. During the ripening of fruit, β-amylase breaks starch into maltose, resulting in the sweet flavor of ripe fruit. β-amylase is present in an inactive form prior to seed germination.