Search results
Results From The WOW.Com Content Network
Student's t-test is a statistical test used to test whether the difference between the response of two groups is statistically significant or not. It is any statistical hypothesis test in which the test statistic follows a Student's t -distribution under the null hypothesis .
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
One of the application of Student's t-test is to test the location of one sequence of independent and identically distributed random variables. If we want to test the locations of multiple sequences of such variables, Šidák correction should be applied in order to calibrate the level of the Student's t-test. Moreover, if we want to test the ...
Test name Scaling Assumptions Data Samples Exact Special case of Application conditions One sample t-test: interval: normal: univariate: 1: No [8]: Location test: Unpaired t-test: interval
The Wilcoxon signed-rank test is a non-parametric rank test for statistical hypothesis testing used either to test the location of a population based on a sample of data, or to compare the locations of two populations using two matched samples. [1] The one-sample version serves a purpose similar to that of the one-sample Student's t-test. [2]
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
The Student's t distribution plays a role in a number of widely used statistical analyses, including Student's t test for assessing the statistical significance of the difference between two sample means, the construction of confidence intervals for the difference between two population means, and in linear regression analysis.
This is non-negative, so it leads to better performance for the paired difference test compared to the unpaired test, unless the α i are constant over i, in which case the paired and unpaired tests are equivalent. In less mathematical terms, the unpaired test assumes that the data in the two groups being compared are independent.