When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    From the ideal gas law PV = nRT we get: = where P is pressure, V is volume, n is number of moles of a given substance, and T is temperature. As pressure is defined as force per area of measurement, the gas equation can also be written as:

  3. Thermal equation of state of solids - Wikipedia

    en.wikipedia.org/wiki/Thermal_equation_of_state...

    In physics, the thermal equation of state is a mathematical expression of pressure P, temperature T, and, volume V.The thermal equation of state for ideal gases is the ideal gas law, expressed as PV=nRT (where R is the gas constant and n the amount of substance), while the thermal equation of state for solids is expressed as:

  4. Ideal gas law - Wikipedia

    en.wikipedia.org/wiki/Ideal_gas_law

    Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...

  5. Van der Waals equation - Wikipedia

    en.wikipedia.org/wiki/Van_der_Waals_equation

    Once the constants and are experimentally determined for a given substance, the van der Waals equation can be used to predict attributes like the boiling point at any given pressure, and the critical point (defined by pressure and temperature such that the substance cannot be liquefied either when > no matter how low the temperature, or when ...

  6. Boyle's law - Wikipedia

    en.wikipedia.org/wiki/Boyle's_law

    For a fixed mass of an ideal gas kept at a fixed temperature, pressure and volume are inversely proportional. [2] Boyle's law is a gas law, stating that the pressure and volume of a gas have an inverse relationship. If volume increases, then pressure decreases and vice versa, when the temperature is held constant.

  7. Avogadro's law - Wikipedia

    en.wikipedia.org/wiki/Avogadro's_Law

    Avogadro's law states that "equal volumes of all gases, at the same temperature and pressure, have the same number of molecules." [1] For a given mass of an ideal gas, the volume and amount (moles) of the gas are directly proportional if the temperature and pressure are constant.

  8. Compressibility factor - Wikipedia

    en.wikipedia.org/wiki/Compressibility_factor

    [5] Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.

  9. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    Values based on approximations (particularly C P − C V = nR) are in many cases not sufficiently accurate for practical engineering calculations, such as flow rates through pipes and valves at moderate to high pressures. An experimental value should be used rather than one based on this approximation, where possible.