When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    Likelihood Ratio: An example "test" is that the physical exam finding of bulging flanks has a positive likelihood ratio of 2.0 for ascites. Estimated change in probability: Based on table above, a likelihood ratio of 2.0 corresponds to an approximately +15% increase in probability.

  3. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  4. Pre- and post-test probability - Wikipedia

    en.wikipedia.org/wiki/Pre-_and_post-test_probability

    Diagram relating pre- and post-test probabilities, with the green curve (upper left half) representing a positive test, and the red curve (lower right half) representing a negative test, for the case of 90% sensitivity and 90% specificity, corresponding to a likelihood ratio positive of 9, and a likelihood ratio negative of 0.111.

  5. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    In statistics, the likelihood-ratio test is a hypothesis test that involves comparing the goodness of fit of two competing statistical models, typically one found by maximization over the entire parameter space and another found after imposing some constraint, based on the ratio of their likelihoods.

  6. Sensitivity and specificity - Wikipedia

    en.wikipedia.org/wiki/Sensitivity_and_specificity

    A positive result in a test with high specificity can be useful for "ruling in" disease, since the test rarely gives positive results in healthy patients. [5] A test with 100% specificity will recognize all patients without the disease by testing negative, so a positive test result would definitively rule in the presence of the disease. However ...

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that the degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.

  8. Does a Faint Line on a COVID Test Mean You Have COVID? - AOL

    www.aol.com/does-faint-line-covid-test-130000248...

    Dr. Russo recommends looking at your test results under good lighting, just to be sure you’re getting accurate results. “You don’t want to miss a faint line, and you don’t want to ostrich ...

  9. Bayes' theorem - Wikipedia

    en.wikipedia.org/wiki/Bayes'_theorem

    If all 1,000 take the test, 82 of those with the disease will get a true positive result (sensitivity of 90.1%), 9 of those with the disease will get a false negative result (false negative rate of 9.9%), 827 of those without the disease will get a true negative result (specificity of 91.0%), and 82 of those without the disease will get a false ...