When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Drag coefficient - Wikipedia

    en.wikipedia.org/wiki/Drag_coefficient

    Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.

  3. File:Drag coefficient on a sphere vs. Reynolds number - main ...

    en.wikipedia.org/wiki/File:Drag_coefficient_on_a...

    English: Drag coefficient C d for a sphere as a function of Reynolds number Re, as obtained from laboratory experiments. The dark line is for a sphere with a smooth surface, while the lighter-colored line is for the case of a rough surface. The numbers along the line indicate several flow regimes and associated changes in the drag coefficient:

  4. File:14ilf1l.svg - Wikipedia

    en.wikipedia.org/wiki/File:14ilf1l.svg

    English: Measured drag coefficients of assorted 3D shapes, drawn to have the same projected frontal area. Vectorized from Image:14ilf1l.gif on en.wikipedia.org. Date

  5. Drag area - Wikipedia

    en.wikipedia.org/wiki/Drag_area

    In mechanics and aerodynamics, the drag area of an object represents the effective size of the object as it is "seen" by the fluid flow around it. The drag area is usually expressed as a product , where is a representative area of the object, and is the drag coefficient, which represents what shape it has and how streamlined it is.

  6. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The size of the largest scales of fluid motion (sometimes called eddies) are set by the overall geometry of the flow. For instance, in an industrial smoke stack, the largest scales of fluid motion are as big as the diameter of the stack itself. The size of the smallest scales is set by the Reynolds number.

  7. Drag equation - Wikipedia

    en.wikipedia.org/wiki/Drag_equation

    is the drag coefficient – a dimensionless coefficient related to the object's geometry and taking into account both skin friction and form drag. If the fluid is a liquid, c d {\displaystyle c_{\rm {d}}} depends on the Reynolds number ; if the fluid is a gas, c d {\displaystyle c_{\rm {d}}} depends on both the Reynolds number and the Mach number .

  8. Drag curve - Wikipedia

    en.wikipedia.org/wiki/Drag_curve

    The drag curve or drag polar is the relationship between the drag on an aircraft and other variables, such as lift, the coefficient of lift, angle-of-attack or speed. It may be described by an equation or displayed as a graph (sometimes called a "polar plot"). [1] Drag may be expressed as actual drag or the coefficient of drag.

  9. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation contains two empirical hydrodynamic coefficients—an inertia coefficient and a drag coefficient—which are determined from experimental data. As shown by dimensional analysis and in experiments by Sarpkaya, these coefficients depend in general on the Keulegan–Carpenter number, Reynolds number and surface roughness. [4] [5]