When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    However, there is a second definition of an irrational number used in constructive mathematics, that a real number is an irrational number if it is apart from every rational number, or equivalently, if the distance | | between and every rational number is positive. This definition is stronger than the traditional definition of an irrational number.

  3. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since at least 1970: [4] [5] CURIOSA 339. A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational. is either rational or irrational. If it is rational, our statement is proved.

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...

  5. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  6. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    If y is irrational, then f(y) = 0. Again, we can take ε = 1 ⁄ 2, and this time, because the rational numbers are dense in the reals, we can pick z to be a rational number as close to y as is required. Again, f(z) = 1 is more than 1 ⁄ 2 away from f(y) = 0.

  7. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    Written in 1873, this proof uses the characterization of as the smallest positive number whose half is a zero of the cosine function and it actually proves that is irrational. [ 3 ] [ 4 ] As in many proofs of irrationality, it is a proof by contradiction .

  8. Commensurability (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Commensurability_(mathematics)

    Example: Let a and b be nonzero real numbers. Then the subgroup of the real numbers R generated by a is commensurable with the subgroup generated by b if and only if the real numbers a and b are commensurable, in the sense that a/b is rational. Thus the group-theoretic notion of commensurability generalizes the concept for real numbers.

  9. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    While the proofs by infinite descent are constructively valid when "irrational" is defined to mean "not rational", we can obtain a constructively stronger statement by using a positive definition of "irrational" as "quantifiably apart from every rational". Let a and b be positive integers such that 1< ⁠ a / b ⁠ < 3/2 (as 1<2< 9/4 satisfies ...