Search results
Results From The WOW.Com Content Network
Creeping flow past a falling sphere in a fluid (e.g., a droplet of fog falling through the air): streamlines, drag force F d and force by gravity F g. At terminal (or settling) velocity , the excess force F e due to the difference between the weight and buoyancy of the sphere (both caused by gravity [ 7 ] ) is given by:
In astrophysics, dynamical friction or Chandrasekhar friction, sometimes called gravitational drag, is loss of momentum and kinetic energy of moving bodies through gravitational interactions with surrounding matter in space. It was first discussed in detail by Subrahmanyan Chandrasekhar in 1943. [1] [2] [3]
Viscous drag of fluid in a pipe: Drag force on the immobile pipe decreases fluid velocity relative to the pipe. [ 4 ] [ 5 ] In the physics of sports, drag force is necessary to explain the motion of balls, javelins, arrows, and frisbees and the performance of runners and swimmers. [ 6 ]
In fluid dynamics, the drag equation is a formula used to calculate the force of drag experienced by an object due to movement through a fully enclosing fluid. The equation is: F d = 1 2 ρ u 2 c d A {\displaystyle F_{\rm {d}}\,=\,{\tfrac {1}{2}}\,\rho \,u^{2}\,c_{\rm {d}}\,A} where
A space vehicle's flight is determined by application of Newton's second law of motion: =, where F is the vector sum of all forces exerted on the vehicle, m is its current mass, and a is the acceleration vector, the instantaneous rate of change of velocity (v), which in turn is the instantaneous rate of change of displacement.
The downward force of gravity (F g) equals the restraining force of drag (F d) plus the buoyancy. The net force on the object is zero, and the result is that the velocity of the object remains constant. Terminal velocity is the maximum speed attainable by an object as it falls through a fluid (air is the most common example).
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
The vortex lattice method is built on the theory of ideal flow, also known as Potential flow.Ideal flow is a simplification of the real flow experienced in nature, however for many engineering applications this simplified representation has all of the properties that are important from the engineering point of view.