When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curvilinear motion - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_motion

    Example: A stone thrown into the air at an angle. Curvilinear motion describes the motion of a moving particles that conforms to a known or fixed curve. The study of such motion involves the use of two co-ordinate systems, the first being planar motion and the latter being cylindrical motion.

  3. Hamiltonian mechanics - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_mechanics

    The solutions to the Hamilton–Jacobi equations for this Hamiltonian are then the same as the geodesics on the manifold. In particular, the Hamiltonian flow in this case is the same thing as the geodesic flow. The existence of such solutions, and the completeness of the set of solutions, are discussed in detail in the article on geodesics.

  4. Classical central-force problem - Wikipedia

    en.wikipedia.org/.../Classical_central-force_problem

    The problem is also important because some more complicated problems in classical physics (such as the two-body problem with forces along the line connecting the two bodies) can be reduced to a central-force problem. Finally, the solution to the central-force problem often makes a good initial approximation of the true motion, as in calculating ...

  5. Richardson number - Wikipedia

    en.wikipedia.org/wiki/Richardson_Number

    Under such circumstances the magnitude of negative Ri is not generally of interest. It can be shown that Ri < 1/4 is a necessary condition for velocity shear to overcome the tendency of a stratified fluid to remain stratified, and some mixing (turbulence) will generally occur.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Classical mechanics - Wikipedia

    en.wikipedia.org/wiki/Classical_mechanics

    As an example, assume that friction is the only force acting on the particle, and that it may be modeled as a function of the velocity of the particle, for example: =, where λ is a positive constant, the negative sign states that the force is opposite the sense of the velocity. Then the equation of motion is

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.

  9. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Figure 1: The angular velocity vector Ω points up for counterclockwise rotation and down for clockwise rotation, as specified by the right-hand rule. Angular position θ(t) changes with time at a rate ω(t) = dθ/dt. Rotational or angular kinematics is the description of the rotation of an object. [21]