Search results
Results From The WOW.Com Content Network
In atomic physics, the Bohr model or Rutherford–Bohr model was the first successful model of the atom. Developed from 1911 to 1918 by Niels Bohr and building on Ernest Rutherford 's nuclear model , it supplanted the plum pudding model of J J Thomson only to be replaced by the quantum atomic model in the 1920s.
The Bohr–Sommerfeld model (also known as the Sommerfeld model or Bohr–Sommerfeld theory) was an extension of the Bohr model to allow elliptical orbits of electrons around an atomic nucleus. Bohr–Sommerfeld theory is named after Danish physicist Niels Bohr and German physicist Arnold Sommerfeld .
Rutherford's model, being supported primarily by scattering data unfamiliar to many scientists, did not catch on until Niels Bohr joined Rutherford's lab and developed a new model for the electrons. [56]: 304 Rutherford model predicted that the scattering of alpha particles would be proportional to the square of the atomic charge.
The seeds of Bohr's correspondence principle appeared from two sources. First Sommerfeld and Max Born developed a "quantization procedure" based on the action angle variables of classical Hamiltonian mechanics. This gave a mathematical foundation for stationary states of the Bohr-Sommerfeld model of the atom.
The Bohr model of the chemical bond took into account the Coulomb repulsion - the electrons in the ring are at the maximum distance from each other. [2] Thus, according to this model, the methane molecule is a regular tetrahedron, in which center the carbon nucleus locates, and in the corners - the nucleus of hydrogen. The chemical bond between ...
The old quantum theory is a collection of results from the years 1900–1925 [1] which predate modern quantum mechanics.The theory was never complete or self-consistent, but was instead a set of heuristic corrections to classical mechanics. [2]
Niels Bohr's 1913 quantum model of the hydrogen atom. In 1913 Niels Bohr proposed a new model of the atom that included quantized electron orbits: electrons still orbit the nucleus much as planets orbit around the Sun, but they are permitted to inhabit only certain orbits, not to orbit at any arbitrary distance. [18]
An electron in a Bohr model atom, moving from quantum level n = 3 to n = 2 and releasing a photon.The energy of an electron is determined by its orbit around the atom, The n = 0 orbit, commonly referred to as the ground state, has the lowest energy of all states in the system.