Search results
Results From The WOW.Com Content Network
Idle is a state that a computer processor is in when it is not being used by any program. Every program or task that runs on a computer system occupies a certain amount of processing time on the CPU. If the CPU has completed all tasks it is idle. Modern processors use idle time to save power.
Its CPU time "usage" is a measure of how much CPU time is not being used by other threads. In Windows 2000 and later the threads in the System Idle Process are also used to implement CPU power saving. The exact power saving scheme depends on the operating system version and on the hardware and firmware capabilities of the system in question ...
CPU time (or process time) is the amount of time that a central processing unit (CPU) was used for processing instructions of a computer program or operating system. CPU time is measured in clock ticks or seconds. Sometimes it is useful to convert CPU time into a percentage of the CPU capacity, giving the CPU usage.
For example, hardware timers send interrupts to the CPU at regular intervals. Most operating systems execute a HLT instruction when there is no immediate work to be done, putting the processor into an idle state. In Windows NT, for example, this instruction is run in the "System Idle Process". On x86 processors, the opcode of HLT is 0xF4.
An idle computer has a load number of 0 (the idle process is not counted). Each process using or waiting for CPU (the ready queue or run queue) increments the load number by 1. Each process that terminates decrements it by 1. Most UNIX systems count only processes in the running (on CPU) or runnable (waiting for CPU) states.
The first number is the total number of seconds the system has been up. The second number is how much of that time the machine has spent idle, in seconds. [16] On multi-core systems (and some Linux versions) the second number is the sum of the idle time accumulated by each CPU. [17]
The CPU-bound process will get and hold the CPU. During this time, all the other processes will finish their I/O and will move into the ready queue, waiting for the CPU. While the processes wait in the ready queue, the I/O devices are idle. Eventually, the CPU-bound process finishes its CPU burst and moves to an I/O device.
If the loop is checking something simple then it will spend most of its time asleep and will waste very little CPU time. In programs that never end (such as operating systems), infinite busy waiting can be implemented by using unconditional jumps as shown by this NASM syntax: jmp $. The CPU will unconditionally jump to its own position forever ...