Ad
related to: solving for inverse trig functions
Search results
Results From The WOW.Com Content Network
The following table shows how inverse trigonometric functions may be used to solve equalities involving the six standard trigonometric functions. It is assumed that the given values θ , {\displaystyle \theta ,} r , {\displaystyle r,} s , {\displaystyle s,} x , {\displaystyle x,} and y {\displaystyle y} all lie within appropriate ranges so that ...
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.
The inverse trigonometric functions are also known as the "arc functions". C is used for the arbitrary constant of integration that can only be determined if something about the value of the integral at some point is known. Thus each function has an infinite number of antiderivatives. There are three common notations for inverse trigonometric ...
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
To avoid any confusion, an inverse trigonometric function is often indicated by the prefix "arc" (for Latin arcus). [9] [10] For instance, the inverse of the sine function is typically called the arcsine function, written as arcsin(x). [9] [10] Similarly, the inverse of a hyperbolic function is indicated by the prefix "ar" (for Latin ārea). [10]
cis is a mathematical notation defined by cis x = cos x + i sin x, [nb 1] where cos is the cosine function, i is the imaginary unit and sin is the sine function. x is the argument of the complex number (angle between line to point and x-axis in polar form).
By restricting the domain of a trigonometric function, however, they can be made invertible. [42]: 48ff The names of the inverse trigonometric functions, together with their domains and range, can be found in the following table: [42]: 48ff [43]: 521ff
Inverse trigonometric functions; List of integrals of trigonometric functions; List of integrals of inverse trigonometric functions; Regiomontanus' angle maximization problem; Tangent half-angle substitution; Trigonometric integral; Trigonometric substitution; Applications Fourier transform; Wave equation