Search results
Results From The WOW.Com Content Network
The phrase the set of the integers was not used before the end of the 19th century, when Georg Cantor introduced the concept of infinite sets and set theory. The use of the letter Z to denote the set of integers comes from the German word Zahlen ("numbers") [3] [4] and has been attributed to David Hilbert. [16]
Transfinite numbers: Numbers that are greater than any natural number. Ordinal numbers: Finite and infinite numbers used to describe the order type of well-ordered sets. Cardinal numbers: Finite and infinite numbers used to describe the cardinalities of sets.
When the set of negative numbers is combined with the set of natural numbers (including 0), the result is defined as the set of integers, Z also written . Here the letter Z comes from German Zahl 'number'. The set of integers forms a ring with the operations addition and multiplication. [35]
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
An axiomatic definition of the real numbers consists of defining them as the elements of a complete ordered field. [2] [3] [4] This means the following: The real numbers form a set, commonly denoted , containing two distinguished elements denoted 0 and 1, and on which are defined two binary operations and one binary relation; the operations are called addition and multiplication of real ...
The following list includes a decimal expansion and set containing each number, ordered by year of discovery. ... Z score for the 97.5 percentile point [59] [60] [61 ...
Zermelo set theory does not include the axioms of replacement and regularity. The axiom of replacement was first published in 1922 by Abraham Fraenkel and Thoralf Skolem, who had independently discovered that Zermelo's axioms cannot prove the existence of the set {Z 0, Z 1, Z 2, ...} where Z 0 is the set of natural numbers and Z n+1 is the ...