When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hydrophobicity scales - Wikipedia

    en.wikipedia.org/wiki/Hydrophobicity_scales

    When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside lipid bilayer. The hydrophobic or hydrophilic character of a compound or amino acid is its hydropathic character, [1] hydropathicity, or hydropathy.

  3. Salting out - Wikipedia

    en.wikipedia.org/wiki/Salting_out

    After protein folding in aqueous solution, hydrophobic amino acids usually form protected hydrophobic areas while hydrophilic amino acids interact with the molecules of solvation and allow proteins to form hydrogen bonds with the surrounding water molecules. If enough of the protein surface is hydrophilic, the protein can be dissolved in water. [4]

  4. Protein precipitation - Wikipedia

    en.wikipedia.org/wiki/Protein_Precipitation

    Hydrophobic residues predominantly occur in the globular protein core, but some exist in patches on the surface. Proteins that have high hydrophobic amino acid content on the surface have low solubility in an aqueous solvent. Charged and polar surface residues interact with ionic groups in the solvent and increase the solubility of a protein.

  5. Transmembrane protein - Wikipedia

    en.wikipedia.org/wiki/Transmembrane_protein

    The portion of the membrane proteins that are attached to the lipid bilayer (see annular lipid shell) consist mostly of hydrophobic amino acids. [12] Membrane proteins which have hydrophobic surfaces, are relatively flexible and are expressed at relatively low levels. This creates difficulties in obtaining enough protein and then growing crystals.

  6. Nucleoporin - Wikipedia

    en.wikipedia.org/wiki/Nucleoporin

    Named after phenylalanine and glycine, FG repeats are small hydrophobic segments that break up long stretches of hydrophilic amino acids. These flexible parts form unfolded, or disordered segments without a fixed structure. [6] They form a mass of chains which allow smaller molecules to diffuse through, but exclude large hydrophilic macromolecules.

  7. Hydrophobic effect - Wikipedia

    en.wikipedia.org/wiki/Hydrophobic_effect

    The hydrophobic effect depends on the temperature, which leads to "cold denaturation" of proteins. [19] The hydrophobic effect can be calculated by comparing the free energy of solvation with bulk water. In this way, the hydrophobic effect not only can be localized but also decomposed into enthalpic and entropic contributions. [3]

  8. Protein metabolism - Wikipedia

    en.wikipedia.org/wiki/Protein_metabolism

    This is entropically favorable since water molecules can move much more freely around hydrophilic amino acids than hydrophobic amino acids. In a hydrophobic environment, the hydrophilic amino acids will concentrate at the core of the protein, while the hydrophobic amino acids will be on the exterior. Since the new interactions between the ...

  9. Beta barrel - Wikipedia

    en.wikipedia.org/wiki/Beta_barrel

    In many cases, the strands contain alternating polar and non-polar (hydrophilic and hydrophobic) amino acids, so that the hydrophobic residues are oriented into the interior of the barrel to form a hydrophobic core and the polar residues are oriented toward the outside of the barrel on the solvent-exposed surface.