When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial theorem - Wikipedia

    en.wikipedia.org/wiki/Binomial_theorem

    In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial.According to the theorem, the power ⁠ (+) ⁠ expands into a polynomial with terms of the form ⁠ ⁠, where the exponents ⁠ ⁠ and ⁠ ⁠ are nonnegative integers satisfying ⁠ + = ⁠ and the coefficient ⁠ ⁠ of each term is a specific positive integer ...

  3. Binomial approximation - Wikipedia

    en.wikipedia.org/wiki/Binomial_approximation

    The approximation can be proven several ways, and is closely related to the binomial theorem. By Bernoulli's inequality , the left-hand side of the approximation is greater than or equal to the right-hand side whenever x > − 1 {\displaystyle x>-1} and α ≥ 1 {\displaystyle \alpha \geq 1} .

  4. Proof of Bertrand's postulate - Wikipedia

    en.wikipedia.org/wiki/Proof_of_Bertrand's_postulate

    In mathematics, Bertrand's postulate (now a theorem) states that, for each , there is a prime such that < <.First conjectured in 1845 by Joseph Bertrand, [1] it was first proven by Chebyshev, and a shorter but also advanced proof was given by Ramanujan.

  5. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    The binomial coefficients can be arranged to form Pascal's triangle, in which each entry is the sum of the two immediately above. Visualisation of binomial expansion up to the 4th power. In mathematics, the binomial coefficients are the positive integers that occur as coefficients in the binomial theorem.

  6. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    Relationship to the binomial theorem [ edit ] The Leibniz rule bears a strong resemblance to the binomial theorem , and in fact the binomial theorem can be proven directly from the Leibniz rule by taking f ( x ) = e a x {\displaystyle f(x)=e^{ax}} and g ( x ) = e b x , {\displaystyle g(x)=e^{bx},} which gives

  7. Multinomial theorem - Wikipedia

    en.wikipedia.org/wiki/Multinomial_theorem

    This proof of the multinomial theorem uses the binomial theorem and induction on m.. First, for m = 1, both sides equal x 1 n since there is only one term k 1 = n in the sum. For the induction step, suppose the multinomial theorem holds for m.

  8. Freshman's dream - Wikipedia

    en.wikipedia.org/wiki/Freshman's_dream

    For larger positive integer values of n, the correct result is given by the binomial theorem. The name "freshman's dream" also sometimes refers to the theorem that says that for a prime number p, if x and y are members of a commutative ring of characteristic p, then (x + y) p = x p + y p.

  9. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    In 370 BC, Plato's Parmenides may have contained traces of an early example of an implicit inductive proof, [5] however, the earliest implicit proof by mathematical induction was written by al-Karaji around 1000 AD, who applied it to arithmetic sequences to prove the binomial theorem and properties of Pascal's triangle.