When.com Web Search

  1. Ads

    related to: solving problems with whole numbers practice

Search results

  1. Results From The WOW.Com Content Network
  2. Sum and Product Puzzle - Wikipedia

    en.wikipedia.org/wiki/Sum_and_Product_Puzzle

    X and Y are two whole numbers greater than 1, and Y > X. Their sum is not greater than 100. S and P are two mathematicians (and consequently perfect logicians); S knows the sum X + Y and P knows the product X × Y. Both S and P know all the information in this paragraph. In the following conversation, both participants are always telling the truth:

  3. Mathematics - Wikipedia

    en.wikipedia.org/wiki/Mathematics

    The modern study of number theory in its abstract form is largely attributed to Pierre de Fermat and Leonhard Euler. The field came to full fruition with the contributions of Adrien-Marie Legendre and Carl Friedrich Gauss. [17] Many easily stated number problems have solutions that require sophisticated methods, often from across mathematics.

  4. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    Closer to the Collatz problem is the following universally quantified problem: Given g, does the sequence of iterates g k (n) reach 1, for all n > 0? Modifying the condition in this way can make a problem either harder or easier to solve (intuitively, it is harder to justify a positive answer but might be easier to justify a negative one).

  5. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Integer arithmetic is not closed under division. This means that when dividing one integer by another integer, the result is not always an integer. For instance, 7 divided by 2 is not a whole number but 3.5. [73] One way to ensure that the result is an integer is to round the result to a whole number.

  6. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The other six Millennium Prize Problems remain unsolved, despite a large number of unsatisfactory proofs by both amateur and professional mathematicians. Andrew Wiles , as part of the Clay Institute's scientific advisory board, hoped that the choice of US$ 1 million prize money would popularize, among general audiences, both the selected ...

  7. Investigations in Numbers, Data, and Space - Wikipedia

    en.wikipedia.org/wiki/Investigations_in_Numbers...

    Investigations was developed between 1990 and 1998. It was just one of a number of reform mathematics curricula initially funded by a National Science Foundation grant. The goals of the project raised opposition to the curriculum from critics (both parents and mathematics teachers) who objected to the emphasis on conceptual learning instead of instruction in more recognized specific methods ...