Search results
Results From The WOW.Com Content Network
PGF/TikZ is a pair of languages for producing vector graphics (e.g., technical illustrations and drawings) from a geometric/algebraic description, with standard features including the drawing of points, lines, arrows, paths, circles, ellipses and polygons.
Asymptote typesets labels and equations with LaTeX, producing high-quality PostScript, PDF, SVG, or 3D PRC output. [2] It is inspired by MetaPost, but has a C-like syntax. It provides a language for typesetting mathematical figures, just as TeX/LaTeX provides a language for typesetting equations.
The use of LaTeX in a piped link or in a section heading does not appear in blue in the linked text or the table of content. Moreover, links to section headings containing LaTeX formulas do not always work as expected. Finally, having many LaTeX formulas may significantly increase the processing time of a page.
The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...
Given a function: from a set X (the domain) to a set Y (the codomain), the graph of the function is the set [4] = {(, ()):}, which is a subset of the Cartesian product.In the definition of a function in terms of set theory, it is common to identify a function with its graph, although, formally, a function is formed by the triple consisting of its domain, its codomain and its graph.
A function is surjective or onto if each element of the codomain is mapped to by at least one element of the domain. In other words, each element of the codomain has a non-empty preimage. Equivalently, a function is surjective if its image is equal to its codomain. A surjective function is a surjection. [1] The formal definition is the following.
Given a function : (i.e. from the real numbers to the real numbers), we can decide if it is injective by looking at horizontal lines that intersect the function's graph. If any horizontal line y = c {\displaystyle y=c} intersects the graph in more than one point, the function is not injective.
Plot of normalized function (i.e. ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] = = (), using ordinary frequency f, where is the normalized form [10] of the sinc function and = (/) / = (/), using angular frequency , where is the unnormalized form of the sinc function.