When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the object's moment of inertia is observed: [1] where. The mechanical work required for or applied during ...

  3. Kinetic theory of gases - Wikipedia

    en.wikipedia.org/wiki/Kinetic_theory_of_gases

    Kinetic theory of gases. The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.

  4. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    In physics, the energy–momentum relation, or relativistic dispersion relation, is the relativistic equation relating total energy (which is also called relativistic energy) to invariant mass (which is also called rest mass) and momentum. It is the extension of mass–energy equivalence for bodies or systems with non-zero momentum.

  5. Equipartition theorem - Wikipedia

    en.wikipedia.org/wiki/Equipartition_theorem

    Equipartition theorem. Thermal motion of an α-helical peptide. The jittery motion is random and complex, and the energy of any particular atom can fluctuate wildly. Nevertheless, the equipartition theorem allows the average kinetic energy of each atom to be computed, as well as the average potential energies of many vibrational modes.

  6. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    Angular momentum (sometimes called moment of momentum or rotational momentum) is the rotational analog of linear momentum. It is an important physical quantity because it is a conserved quantity – the total angular momentum of a closed system remains constant. Angular momentum has both a direction and a magnitude, and both are conserved.

  7. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    Lagrangian mechanics describes a mechanical system as a pair (M, L) consisting of a configuration space M and a smooth function within that space called a Lagrangian. For many systems, L = T − V, where T and V are the kinetic and potential energy of the system, respectively. [3]

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    In quantum mechanics, an energy level is degenerate if it corresponds to two or more different measurable states of a quantum system. Conversely, two or more different states of a quantum mechanical system are said to be degenerate if they give the same value of energy upon measurement. The number of different states corresponding to a ...