When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    The tables below list all of the divisors of the numbers 1 to 1000. A divisor of an integer n is an integer m , for which n / m is again an integer (which is necessarily also a divisor of n ). For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21).

  3. Deficient number - Wikipedia

    en.wikipedia.org/wiki/Deficient_number

    More generally, all odd numbers with one or two distinct prime factors are deficient. It follows that there are infinitely many odd deficient numbers. There are also an infinite number of even deficient numbers as all powers of two have the sum (1 + 2 + 4 + 8 + ... + 2 x-1 = 2 x - 1).

  4. List of numbers - Wikipedia, the free encyclopedia

    en.wikipedia.org/wiki/List_of_numbers

    A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.

  5. Arithmetic number - Wikipedia

    en.wikipedia.org/wiki/Arithmetic_number

    For instance, 6 is an arithmetic number because the average of its divisors is + + + =, which is also an integer. However, 2 is not an arithmetic number because its only divisors are 1 and 2, and their average 3/2 is not an integer. The first numbers in the sequence of arithmetic numbers are

  6. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  7. 5040 (number) - Wikipedia

    en.wikipedia.org/wiki/5040_(number)

    5040 (five thousand [and] forty) is the natural number following 5039 and preceding 5041.. It is a factorial (7!), the 8th superior highly composite number, [1] the 19th highly composite number, [2] an abundant number, the 8th colossally abundant number [3] and the number of permutations of 4 items out of 10 choices (10 × 9 × 8 × 7 = 5040).

  8. Refactorable number - Wikipedia

    en.wikipedia.org/wiki/Refactorable_number

    Demonstration, with Cuisenaire rods, that 1, 2, 8, 9, and 12 are refactorable. A refactorable number or tau number is an integer n that is divisible by the count of its divisors, or to put it algebraically, n is such that (). The first few refactorable numbers are listed in (sequence A033950 in the OEIS) as

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.