Search results
Results From The WOW.Com Content Network
Triplet oxygen, 3 O 2, refers to the S = 1 electronic ground state of molecular oxygen (dioxygen). Molecules of triplet oxygen contain two unpaired electrons, making triplet oxygen an unusual example of a stable and commonly encountered diradical: [2] it is more stable as a triplet than a singlet.
An electron configuration with two unpaired electrons, as is found in dioxygen orbitals (see the filled π* orbitals in the diagram) that are of equal energy—i.e., degenerate—is a configuration termed a spin triplet state. Hence, the ground state of the O 2 molecule is referred to as triplet oxygen.
This state is referred to by the title term, singlet oxygen, commonly abbreviated 1 O 2, to distinguish it from the triplet ground state molecule, 3 O 2. [2] [3] Molecular orbital theory predicts the electronic ground state denoted by the molecular term symbol 3 Σ – g, and two low-lying excited singlet states with term symbols 1 Δ g and 1 ...
Singlet oxygen is the common name used for the two metastable states of molecular oxygen (O 2) with higher energy than the ground state triplet oxygen. Because of the differences in their electron shells, singlet oxygen has different chemical and physical properties than triplet oxygen, including absorbing and emitting light at different ...
As in diboron, these two unpaired electrons have the same spin in the ground state, which is a paramagnetic diradical triplet oxygen. The first excited state has both HOMO electrons paired in one orbital with opposite spins, and is known as singlet oxygen. MO diagram of dioxygen triplet ground state
In the ground state of dioxygen, this energy level is occupied by two electrons of the same spin, as shown in the molecular orbital diagram. The molecule, therefore, has two unpaired electrons and is in a triplet state. In contrast, the first and second excited states of dioxygen are both states of singlet oxygen. Each has two electrons of ...
As a result, when filling up atomic orbitals, the maximum number of unpaired electrons (and hence maximum total spin state) is assured. The valence orbitals of the oxygen atom (sides of diagram) and the dioxygen molecule (middle) in the ground state. In both atom and molecule, the electrons in singly occupied orbitals have their spins parallel.
For example, the table shows that the first pair of vertically adjacent atoms with different ground-state term symbols are V and Nb. The 6 D 1 ⁄ 2 ground state of Nb corresponds to an excited state of V 2112 cm −1 above the 4 F 3 ⁄ 2 ground state of V, which in turn corresponds to an excited state of Nb 1143 cm −1 above the Nb ground ...