Search results
Results From The WOW.Com Content Network
The Rayleigh–Ritz method is often used in mechanical engineering for finding the approximate real resonant frequencies of multi degree of freedom systems, such as spring mass systems or flywheels on a shaft with varying cross section. It is an extension of Rayleigh's method.
In 1909 Ritz developed a direct method to find an approximate solution for boundary value problems. It converts the often insoluble differential equation into the solution of a matrix equation. It is a theoretical preparatory work for the finite element method (FEM). This method is also known as Ritz's variation principle and the Rayleigh-Ritz ...
There are two main methods used to calculate critical speed—the Rayleigh–Ritz method and Dunkerley's method. Both calculate an approximation of the first natural frequency of vibration, which is assumed to be nearly equal to the critical speed of rotation. The Rayleigh–Ritz method is discussed here.
Courant, Richard; Hilbert, David (1989), Method of Mathematical Physics, Vol. I, Wiley-Interscience, ISBN 0-471-50447-5 (Pages 31–34; in most textbooks the "maximum-minimum method" is usually credited to Rayleigh and Ritz, who applied the calculus of variations in the theory of sound.)
However, many of the analytical models of coupled continuous subdomains do not have closed-form solutions, which led to discretization and approximation techniques such as the Ritz method [1] (which is sometimes called the Rayleigh-Ritz method due to the similarity between Ritz's formulation and the Rayleigh ratio) the boundary element method ...
Reference [12] goes further applying the LOBPCG algorithm to each approximate eigenvector separately, i.e., running the unblocked version of the LOBPCG method for each desired eigenpair for a fixed number of iterations. The Rayleigh-Ritz procedures in these runs only need to solve a set of 3 × 3 projected eigenvalue problems.
This variational characterization of eigenvalues leads to the Rayleigh–Ritz method: choose an approximating as a linear combination of basis functions (for example trigonometric functions) and carry out a finite-dimensional minimization among such linear combinations. This method is often surprisingly accurate.
The Sturm–Liouville differential equation with boundary conditions may be solved analytically, which can be exact or provide an approximation, by the Rayleigh–Ritz method, or by the matrix-variational method of Gerck et al. [1] [2] [3] Numerically, a variety of methods are also available.