Search results
Results From The WOW.Com Content Network
A total recursive function is a partial recursive function that is defined for every input. Every primitive recursive function is total recursive, but not all total recursive functions are primitive recursive. The Ackermann function A(m,n) is a well-known example of a total recursive function (in fact, provable total), that is not primitive ...
The primitive recursive functionals are the smallest collection of objects of finite type such that: The constant function f(n) = 0 is a primitive recursive functional; The successor function g(n) = n + 1 is a primitive recursive functional; For any type σ×τ, the functional K(x σ, y τ) = x is a primitive recursive functional
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
Recursion that contains only a single self-reference is known as single recursion, while recursion that contains multiple self-references is known as multiple recursion. Standard examples of single recursion include list traversal, such as in a linear search, or computing the factorial function, while standard examples of multiple recursion ...
In the above example, the function Base<Derived>::interface(), though declared before the existence of the struct Derived is known by the compiler (i.e., before Derived is declared), is not actually instantiated by the compiler until it is actually called by some later code which occurs after the declaration of Derived (not shown in the above ...
A primitive recursive ordinal function is defined in the same way, except that the initial function F(x, y) = x ∪ {y} is replaced by F(x) = x ∪ {x} (the successor of x). The primitive recursive ordinal functions are the same as the primitive recursive set functions that map ordinals to ordinals.
The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number.They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ.
Every function in the Grzegorczyk hierarchy is a primitive recursive function, and every primitive recursive function appears in the hierarchy at some level. The hierarchy deals with the rate at which the values of the functions grow; intuitively, functions in lower levels of the hierarchy grow slower than functions in the higher levels.