When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy density - Wikipedia

    en.wikipedia.org/wiki/Energy_density

    The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).

  3. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    If electromagnetic energy is not gained from or lost to other forms of energy within some region (e.g., mechanical energy, or heat), then electromagnetic energy is locally conserved within that region, yielding a continuity equation as a special case of Poynting's theorem: = where is the energy density of the electromagnetic field. This ...

  4. Poynting's theorem - Wikipedia

    en.wikipedia.org/wiki/Poynting's_theorem

    where: is the rate of change of the energy density in the volume. ∇•S is the energy flow out of the volume, given by the divergence of the Poynting vector S. J•E is the rate at which the fields do work on charges in the volume (J is the current density corresponding to the motion of charge, E is the electric field, and • is the dot product).

  5. Energy density Extended Reference Table - Wikipedia

    en.wikipedia.org/wiki/Energy_density_Extended...

    Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000

  6. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    Energy density is the amount of energy per mass or volume of food. The energy density of a food can be determined from the label by dividing the energy per serving (usually in kilojoules or food calories) by the serving size (usually in grams, milliliters or fluid ounces). An energy unit commonly used in nutritional contexts within non-metric ...

  7. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    The total energy density U can be similarly calculated, except the integration is over the whole sphere and there is no cosine, and the energy flux (U c) should be divided by the velocity c to give the energy density U: = (,) Thus / ⁡ ⁡ is replaced by ⁡, giving an extra factor of 4.

  8. Planck's law - Wikipedia

    en.wikipedia.org/wiki/Planck's_law

    According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = ⁡ alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = ⁡ where k B is the Boltzmann ...

  9. Energy (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Energy_(signal_processing)

    Similarly, the spectral energy density of signal x(t) is = | | where X(f) is the Fourier transform of x(t).. For example, if x(t) represents the magnitude of the electric field component (in volts per meter) of an optical signal propagating through free space, then the dimensions of X(f) would become volt·seconds per meter and () would represent the signal's spectral energy density (in volts ...