When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Energy level - Wikipedia

    en.wikipedia.org/wiki/Energy_level

    The energy level of the bonding orbitals is lower, and the energy level of the antibonding orbitals is higher. For the bond in the molecule to be stable, the covalent bonding electrons occupy the lower energy bonding orbital, which may be signified by such symbols as σ or π depending on the situation.

  3. Glossary of physics - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_physics

    The energy that a physical body possesses due to its motion, defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. The body continues to maintain this kinetic energy unless its velocity changes. Contrast potential energy. Kirchhoff's circuit laws. Also called Kirchhoff's rules or simply Kirchhoff's laws.

  4. Energy transformation - Wikipedia

    en.wikipedia.org/wiki/Energy_transformation

    Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. [1] In physics , energy is a quantity that provides the capacity to perform work or moving (e.g. lifting an object) or provides heat .

  5. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).

  6. Kasha's rule - Wikipedia

    en.wikipedia.org/wiki/Kasha's_rule

    A photon with energy excites an electron of fundamental level, of energy , up to an excited energy level (e.g. or ) or on one of the vibrational sub-levels. Vibrational relaxation then takes place between excited levels, which leads to dissipation of part of the energy ( Δ E d {\displaystyle \Delta E_{d}} ), taking the form of a transition ...

  7. Hyperfine structure - Wikipedia

    en.wikipedia.org/wiki/Hyperfine_structure

    In atomic physics, hyperfine structure is defined by small shifts in otherwise degenerate electronic energy levels and the resulting splittings in those electronic energy levels of atoms, molecules, and ions, due to electromagnetic multipole interaction between the nucleus and electron clouds.

  8. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    For any reaction to proceed, the starting material must have enough energy to cross over an energy barrier. This energy barrier is known as activation energy (∆G ≠) and the rate of reaction is dependent on the height of this barrier. A low energy barrier corresponds to a fast reaction and high energy barrier corresponds to a slow reaction.

  9. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    The total energy is then written = where is a mathematical representation of the atomic environment surrounding the atom , known as the descriptor. [55] E {\displaystyle E} is a machine-learning model that provides a prediction for the energy of atom i {\displaystyle i} based on the descriptor output.