Ad
related to: graph theory planarity testing techniques examples
Search results
Results From The WOW.Com Content Network
The Fraysseix–Rosenstiehl planarity criterion can be used directly as part of algorithms for planarity testing, while Kuratowski's and Wagner's theorems have indirect applications: if an algorithm can find a copy of K 5 or K 3,3 within a given graph, it can be sure that the input graph is not planar and return without additional computation.
In graph theory, a branch of mathematics, the left-right planarity test or de Fraysseix–Rosenstiehl planarity criterion [1] is a characterization of planar graphs based on the properties of the depth-first search trees, published by de Fraysseix and Rosenstiehl (1982, 1985) [2] [3] and used by them with Patrice Ossona de Mendez to develop a linear time planarity testing algorithm.
Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5]
In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [1] [2] Such a drawing is called a plane graph, or a planar embedding of the graph.
In graph theory, Mac Lane's planarity criterion is a characterisation of planar graphs in terms of their cycle spaces, named after Saunders Mac Lane who published it in 1937. It states that a finite undirected graph is planar if and only if the cycle space of the graph (taken modulo 2) has a cycle basis in which each edge of the graph ...
Book (graph theory) Bull graph; Butterfly graph; C. ... Left-right planarity test; Friendship graph; Frucht graph; G. Goldner–Harary graph; Golomb graph; Good ...
A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...
The Hopcroft–Tarjan planarity testing algorithm was the first linear-time algorithm for planarity testing. [11] Tarjan has also developed important data structures such as the Fibonacci heap (a heap data structure consisting of a forest of trees), and the splay tree (a self-adjusting binary search tree; co-invented by Tarjan and Daniel Sleator).