When.com Web Search

  1. Ad

    related to: graph theory planarity testing techniques examples

Search results

  1. Results From The WOW.Com Content Network
  2. Planarity testing - Wikipedia

    en.wikipedia.org/wiki/Planarity_testing

    The Fraysseix–Rosenstiehl planarity criterion can be used directly as part of algorithms for planarity testing, while Kuratowski's and Wagner's theorems have indirect applications: if an algorithm can find a copy of K 5 or K 3,3 within a given graph, it can be sure that the input graph is not planar and return without additional computation.

  3. Left-right planarity test - Wikipedia

    en.wikipedia.org/wiki/Left-right_planarity_test

    In graph theory, a branch of mathematics, the left-right planarity test or de Fraysseix–Rosenstiehl planarity criterion [1] is a characterization of planar graphs based on the properties of the depth-first search trees, published by de Fraysseix and Rosenstiehl (1982, 1985) [2] [3] and used by them with Patrice Ossona de Mendez to develop a linear time planarity testing algorithm.

  4. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Minor testing (checking whether an input graph contains an input graph as a minor); the same holds with topological minors; Steiner tree, or Minimum spanning tree for a subset of the vertices of a graph. [2] (The minimum spanning tree for an entire graph is solvable in polynomial time.) Modularity maximization [5]

  5. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. [1] [2] Such a drawing is called a plane graph, or a planar embedding of the graph.

  6. Mac Lane's planarity criterion - Wikipedia

    en.wikipedia.org/wiki/Mac_Lane's_planarity_criterion

    In graph theory, Mac Lane's planarity criterion is a characterisation of planar graphs in terms of their cycle spaces, named after Saunders Mac Lane who published it in 1937. It states that a finite undirected graph is planar if and only if the cycle space of the graph (taken modulo 2) has a cycle basis in which each edge of the graph ...

  7. Category:Planar graphs - Wikipedia

    en.wikipedia.org/wiki/Category:Planar_graphs

    Book (graph theory) Bull graph; Butterfly graph; C. ... Left-right planarity test; Friendship graph; Frucht graph; G. Goldner–Harary graph; Golomb graph; Good ...

  8. Kuratowski's theorem - Wikipedia

    en.wikipedia.org/wiki/Kuratowski's_theorem

    A subdivision of a graph is a graph formed by subdividing its edges into paths of one or more edges. Kuratowski's theorem states that a finite graph G {\displaystyle G} is planar if it is not possible to subdivide the edges of K 5 {\displaystyle K_{5}} or K 3 , 3 {\displaystyle K_{3,3}} , and then possibly add additional edges and vertices, to ...

  9. Robert Tarjan - Wikipedia

    en.wikipedia.org/wiki/Robert_Tarjan

    The Hopcroft–Tarjan planarity testing algorithm was the first linear-time algorithm for planarity testing. [11] Tarjan has also developed important data structures such as the Fibonacci heap (a heap data structure consisting of a forest of trees), and the splay tree (a self-adjusting binary search tree; co-invented by Tarjan and Daniel Sleator).