When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron.

  3. Planar graph - Wikipedia

    en.wikipedia.org/wiki/Planar_graph

    Euler's formula states that if a finite, connected, planar graph is drawn in the plane without any edge intersections, and v is the number of vertices, e is the number of edges and f is the number of faces (regions bounded by edges, including the outer, infinitely large region), then

  4. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  5. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  6. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering. The physicist Richard Feynman called the equation "our jewel" and "the most remarkable formula in mathematics". [2]

  7. Euler operator (digital geometry) - Wikipedia

    en.wikipedia.org/wiki/Euler_operator_(digital...

    Let the number of vertices be V, edges be E, faces be F, components H, shells S, and let the genus be G (S and G correspond to the b 0 and b 2 Betti numbers respectively). Then, to denote a meaningful geometric object, the mesh must satisfy the generalized Euler–Poincaré formula. V – E + F = H + 2 * (S – G) The Euler operators preserve ...

  8. Four color theorem - Wikipedia

    en.wikipedia.org/wiki/Four_color_theorem

    Suppose v, e, and f are the number of vertices, edges, and regions (faces). Since each region is triangular and each edge is shared by two regions, we have that 2e = 3f. This together with Euler's formula, v − e + f = 2, can be used to show that 6v − 2e = 12. Now, the degree of a vertex is the number of edges abutting it.

  9. Handshaking lemma - Wikipedia

    en.wikipedia.org/wiki/Handshaking_lemma

    Euler's proof of the degree sum formula uses the technique of double counting: he counts the number of incident pairs (,) where is an edge and vertex is one of its endpoints, in two different ways. Vertex v {\displaystyle v} belongs to deg ⁡ ( v ) {\displaystyle \deg(v)} pairs, where deg ⁡ ( v ) {\displaystyle \deg(v)} (the degree of v ...