When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lattice Boltzmann methods - Wikipedia

    en.wikipedia.org/wiki/Lattice_Boltzmann_methods

    Schematic of D2Q9 lattice vectors for 2D Lattice Boltzmann. Unlike CFD methods that solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice.

  3. Boltzmann equation - Wikipedia

    en.wikipedia.org/wiki/Boltzmann_equation

    The equation arises not by analyzing the individual positions and momenta of each particle in the fluid but rather by considering a probability distribution for the position and momentum of a typical particle—that is, the probability that the particle occupies a given very small region of space (mathematically the volume element) centered at ...

  4. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta_methods

    Here + is the RK4 approximation of (+), and the next value (+) is determined by the present value plus the weighted average of four increments, where each increment is the product of the size of the interval, h, and an estimated slope specified by function f on the right-hand side of the differential equation.

  5. Residence time - Wikipedia

    en.wikipedia.org/wiki/Residence_time

    The residence time of a fluid parcel is the total time that the parcel has spent inside a control volume (e.g.: a chemical reactor, a lake, a human body).The residence time of a set of parcels is quantified in terms of the frequency distribution of the residence time in the set, which is known as residence time distribution (RTD), or in terms of its average, known as mean residence time.

  6. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.

  8. Method of averaging - Wikipedia

    en.wikipedia.org/wiki/Method_of_averaging

    The purpose of the method of averaging is to tell us the qualitative behavior of the vector field when we average it over a period of time. It guarantees that the solution y ( t ) {\displaystyle y(t)} approximates x ( t ) {\displaystyle x(t)} for times t = O ( 1 / ε ) . {\displaystyle t={\mathcal {O}}(1/\varepsilon ).}

  9. Defining equation (physical chemistry) - Wikipedia

    en.wikipedia.org/wiki/Defining_equation...

    Theoretical chemistry requires quantities from core physics, such as time, volume, temperature, and pressure.But the highly quantitative nature of physical chemistry, in a more specialized way than core physics, uses molar amounts of substance rather than simply counting numbers; this leads to the specialized definitions in this article.