Search results
Results From The WOW.Com Content Network
In computer programming, a bitwise operation operates on a bit string, a bit array or a binary numeral (considered as a bit string) at the level of its individual bits. It is a fast and simple action, basic to the higher-level arithmetic operations and directly supported by the processor. Most bitwise operations are presented as two-operand ...
The two basic types are the arithmetic left shift and the arithmetic right shift. For binary numbers it is a bitwise operation that shifts all of the bits of its operand; every bit in the operand is simply moved a given number of bit positions, and the vacant bit-positions are filled in.
The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages. It is summarized as: [2] [5] Parentheses; Exponentiation; Multiplication and division; Addition and subtraction
The aforementioned lack of associativity of floating-point operations in general means that compilers cannot as effectively reorder arithmetic expressions as they could with integer and fixed-point arithmetic, presenting a roadblock in optimizations such as common subexpression elimination and auto-vectorization. [66]
Augmented assignment (or compound assignment) is the name given to certain assignment operators in certain programming languages (especially those derived from C).An augmented assignment is generally used to replace a statement where an operator takes a variable as one of its arguments and then assigns the result back to the same variable.
For example, in Java and JavaScript, the logical right shift operator is >>>, but the arithmetic right shift operator is >>. (Java has only one left shift operator (<<), because left shift via logic and arithmetic have the same effect.) The programming languages C, C++, and Go, however, have only one right shift operator, >>. Most C and C++ ...
In computer science, modular arithmetic is often applied in bitwise operations and other operations involving fixed-width, cyclic data structures. The modulo operation, as implemented in many programming languages and calculators , is an application of modular arithmetic that is often used in this context.
However, in the Java programming language, the type int represents the set of 32-bit integers ranging in value from −2,147,483,648 to 2,147,483,647, with arithmetic operations that wrap on overflow. In Rust this 32-bit integer type is denoted i32 and panics on overflow in debug mode. [5]