Ad
related to: schrodinger wave equation symbol name
Search results
Results From The WOW.Com Content Network
The equation was postulated by Schrödinger based on a postulate of Louis de Broglie that all matter has an associated matter wave. The equation predicted bound states of the atom in agreement with experimental observations. [4]: II:268 The Schrödinger equation is not the only way to study quantum mechanical systems and make predictions.
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level ) which results in the concept of quanta .
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j
The failure of classical mechanics applied to molecular, atomic, and nuclear systems and smaller induced the need for a new mechanics: quantum mechanics.The mathematical formulation was led by De Broglie, Bohr, Schrödinger, Pauli, and Heisenberg, and others, around the mid-1920s, and at that time was analogous to that of classical mechanics.
Quantity (common name/s) (Common) symbol/s SI units Dimension Number of wave cycles N: dimensionless dimensionless (Oscillatory) displacement Symbol of any quantity which varies periodically, such as h, x, y (mechanical waves), x, s, η (longitudinal waves) I, V, E, B, H, D (electromagnetism), u, U (luminal waves), ψ, Ψ, Φ (quantum mechanics).
This empirical concept was given a theoretical basis by Paul Dirac when he introduced a relativistically correct (Lorentz covariant) form of the one-particle Schrödinger equation. The Dirac equation predicts that spin and spatial motion of a particle interact via spin–orbit coupling. In analogy spin-other-orbit coupling was introduced.
The Klein–Gordon equation was first considered as a quantum wave equation by Erwin Schrödinger in his search for an equation describing de Broglie waves. The equation is found in his notebooks from late 1925, and he appears to have prepared a manuscript applying it to the hydrogen atom.