Search results
Results From The WOW.Com Content Network
[a] While processes in isolated systems are never reversible, [3] cyclical processes can be reversible or irreversible. [4] Reversible processes are hypothetical or idealized but central to the second law of thermodynamics. [3] Melting or freezing of ice in water is an example of a realistic process that is nearly reversible.
Cyclic processes were important conceptual devices in the early days of thermodynamical investigation, while the concept of the thermodynamic state variable was being developed. (3) Defined by flows through a system, a flow process is a steady state of flows into and out of a vessel with definite wall properties. The internal state of the ...
In some cases, when analyzing a thermodynamic process, one can assume that each intermediate state in the process is at equilibrium. Such a process is called quasistatic. [4] For a process to be reversible, each step in the process must be reversible. For a step in a process to be reversible, the system must be in equilibrium throughout the step.
For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings. Temperature is the thermodynamic conjugate variable to entropy, thus the conjugate process would be an isothermal process , in which the system is thermally "connected" to a constant-temperature heat bath.
For any irreversible process, since entropy is a state function, we can always connect the initial and terminal states with an imaginary reversible process and integrating on that path to calculate the difference in entropy. Now reverse the reversible process and combine it with the said irreversible process.
where a reversible path is chosen from absolute zero to the final state, so that for an isothermal reversible process Δ S = Q r e v T {\displaystyle \Delta S={Q_{rev} \over T}} . In general, for any cyclic process the state points can be connected by reversible paths, so that
Reversible process (thermodynamics), a process or cycle such that the net change at each stage in the combined entropy of the system and its surroundings is zero; Reversible reaction, a chemical reaction for which the position of the chemical equilibrium is very sensitive to the imposed physical conditions; so the reaction can be made to run ...
For a particular reversible process in general, the work done reversibly on the system, ,, and the heat transferred reversibly to the system, , are not required to occur respectively adiabatically or adynamically, but they must belong to the same particular process defined by its particular reversible path, , through the space of thermodynamic ...