Ad
related to: pics of solids in geometry dash
Search results
Results From The WOW.Com Content Network
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
The earliest known written records of the regular convex solids originated from Classical Greece. When these solids were all discovered and by whom is not known, but Theaetetus (an Athenian) was the first to give a mathematical description of all five (Van der Waerden, 1954), (Euclid, book XIII).
Solid geometry, including table of major three-dimensional shapes; Box-drawing character; Cuisenaire rods (learning aid) Geometric shape; Geometric Shapes (Unicode block) Glossary of shapes with metaphorical names; List of symbols; Pattern Blocks (learning aid)
The Archimedean solids. Two of them are chiral, with both forms shown, making 15 models in all. The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygons, but not all alike, and whose vertices are all symmetric to each other. The solids were named after Archimedes, although
A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal ; examples include Platonic and Archimedean solids as well as prisms ...
In geometry, the Rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pentagonal faces, 60 vertices , and 120 edges .
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
Name picture Dual Archimedean solid Faces Edges Vertices Face Polygon rhombic triacontahedron (quasi-regular dual: face- and edge-uniform) (icosidodecahedron