Search results
Results From The WOW.Com Content Network
The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and cause the liquid to form vapor bubbles.
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
where temperature T is in degrees Celsius (°C) and saturation vapor pressure P is in kilopascals (kPa). According to Monteith and Unsworth, "Values of saturation vapour pressure from Tetens' formula are within 1 Pa of exact values up to 35 °C." Murray (1967) provides Tetens' equation for temperatures below 0 °C: [3]
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
e * is the saturation water vapor pressure T is the absolute air temperature in kelvins T st is the steam-point (i.e. boiling point at 1 atm.) temperature (373.15 K) e * st is e * at the steam-point pressure (1 atm = 1013.25 hPa) Similarly, the correlation for the saturation water vapor pressure over ice is:
The definition of a w is where p is the partial water vapor pressure in equilibrium with the solution, and p* is the (partial) vapor pressure of pure water at the same temperature. An alternate definition can be a w ≡ l w x w {\displaystyle a_{w}\equiv l_{w}x_{w}} where l w is the activity coefficient of water and x w is the mole fraction of ...
The Lee–Kesler method [1] allows the estimation of the saturated vapor pressure at a given temperature for all components for which the critical pressure P c, the critical temperature T c, and the acentric factor ω are known.