Search results
Results From The WOW.Com Content Network
This is because the table captions will not be correctly placed in mobile portrait view, or other narrow mobile screens, when the tables wrap. This is especially noticeable if the caption is longer. In that case when one table drops below the other, then the caption will be severely wrapped above only the first column of the table.
The first release of Power BI was based on the Microsoft Excel-based add-ins: Power Query, Power Pivot and Power View. With time, Microsoft also added many additional features like question and answers, enterprise-level data connectivity, and security options via Power BI Gateways. [10] Power BI was first released to the general public on 24 ...
In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix A by producing another matrix, often denoted by A T (among other notations). [1] The transpose of a matrix was introduced in 1858 by the British mathematician Arthur Cayley. [2]
Transposition, producing the transpose of a matrix A T, which is computed by swapping columns for rows in the matrix A; Transpose of a linear map; Transposition (logic), a rule of replacement in philosophical logic; Transpose relation, another name for converse relation
1. Transpose: if A is a matrix, denotes the transpose of A, that is, the matrix obtained by exchanging rows and columns of A. Notation is also used. The symbol is often replaced by the letter T or t. 2. For inline uses of the symbol, see ⊤. ⊥ 1.
The transpose A T is an invertible matrix. A is row-equivalent to the n-by-n identity matrix I n. A is column-equivalent to the n-by-n identity matrix I n. A has n pivot positions. A has full rank: rank A = n. A has a trivial kernel: ker(A) = {0}. The linear transformation mapping x to Ax is bijective; that is, the equation Ax = b has exactly ...
OFFT - recursive block in-place transpose of square matrices, in Fortran; Jason Stratos Papadopoulos, blocked in-place transpose of square matrices, in C, sci.math.num-analysis newsgroup (April 7, 1998). See "Source code" links in the references section above, for additional code to perform in-place transposes of both square and non-square ...
The conjugate transpose "adjoint" matrix should not be confused with the adjugate, (), which is also sometimes called adjoint. The conjugate transpose of a matrix A {\displaystyle \mathbf {A} } with real entries reduces to the transpose of A {\displaystyle \mathbf {A} } , as the conjugate of a real number is the number itself.