Search results
Results From The WOW.Com Content Network
Characteristics may fail to cover part of the domain of the PDE. This is called a rarefaction, and indicates the solution typically exists only in a weak, i.e. integral equation, sense. The direction of the characteristic lines indicates the flow of values through the solution, as the example above demonstrates.
Stencils are the basis for many algorithms to numerically solve partial differential equations (PDE). Two examples of stencils are the five-point stencil and the Crank–Nicolson method stencil. Stencils are classified into two categories: compact and non-compact , the difference being the layers from the point of interest that are also used ...
A parabolic partial differential equation is a type of partial differential equation (PDE). Parabolic PDEs are used to describe a wide variety of time-dependent phenomena in, i.a., engineering science, quantum mechanics and financial mathematics. Examples include the heat equation, time-dependent Schrödinger equation and the Black–Scholes ...
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
Method of lines - the example, which shows the origin of the name of method. The method of lines (MOL, NMOL, NUMOL [1] [2] [3]) is a technique for solving partial differential equations (PDEs) in which all but one dimension is discretized.
PDE-constrained optimization; Perfectly matched layer; Perron method; Petrov–Galerkin method; Phase space method; Poincaré–Lelong equation; Poisson's equation; Population balance equation; Porous medium equation; Potential theory; Primitive equations; Proper orthogonal decomposition; Pseudo-differential operator; Pseudoanalytic function
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.
The process eliminates all the spatial derivatives from the PDE, thus approximating the PDE locally using the following: a set of algebraic equations for steady-state problems; and; a set of ordinary differential equations for transient problems. These equation sets are element equations. They are linear if the