When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Power of a point - Wikipedia

    en.wikipedia.org/wiki/Power_of_a_point

    where A 1 and A 2 are the centers of the two circles and r 1 and r 2 are their radii. The power of a point arises in the special case that one of the radii is zero. If the two circles are orthogonal, the Darboux product vanishes. If the two circles intersect, then their Darboux product is ⁡

  3. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    The problem of maximizing the total area of three circles in a triangle is never solved by the Malfatti circles. Instead, the optimal solution can always be found by a greedy algorithm that finds the largest circle within the given triangle, the largest circle within the three connected subsets of the triangle outside of the first circle, and ...

  4. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    Gergonne's approach is to consider the solution circles in pairs. [1] Let a pair of solution circles be denoted as C A and C B (the pink circles in Figure 6), and let their tangent points with the three given circles be denoted as A 1, A 2, A 3, and B 1, B 2, B 3, respectively. Gergonne's solution aims to locate these six points, and thus solve ...

  5. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A circle circumference and radius are proportional. The area enclosed and the square of its radius are proportional. The constants of proportionality are 2 π and π respectively. The circle that is centred at the origin with radius 1 is called the unit circle. Thought of as a great circle of the unit sphere, it becomes the Riemannian circle.

  6. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    [1] More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other ...

  7. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]

  8. Dividing a circle into areas - Wikipedia

    en.wikipedia.org/wiki/Dividing_a_circle_into_areas

    The number of points (n), chords (c) and regions (r G) for first 6 terms of Moser's circle problem. In geometry, the problem of dividing a circle into areas by means of an inscribed polygon with n sides in such a way as to maximise the number of areas created by the edges and diagonals, sometimes called Moser's circle problem (named after Leo Moser), has a solution by an inductive method.

  9. Gauss circle problem - Wikipedia

    en.wikipedia.org/wiki/Gauss_circle_problem

    Gauss's circle problem asks how many points there are inside this circle of the form (,) where and are both integers. Since the equation of this circle is given in Cartesian coordinates by x 2 + y 2 = r 2 {\displaystyle x^{2}+y^{2}=r^{2}} , the question is equivalently asking how many pairs of integers m and n there are such that