Search results
Results From The WOW.Com Content Network
Bacterial morphological plasticity refers to changes in the shape and size that bacterial cells undergo when they encounter stressful environments. Although bacteria have evolved complex molecular strategies to maintain their shape, many are able to alter their shape as a survival strategy in response to protist predators, antibiotics, the immune response, and other threats.
Spiral bacteria are another major bacterial cell morphology. [2] [30] [31] [32] Spiral bacteria can be sub-classified as spirilla, spirochetes, or vibrios based on the number of twists per cell, cell thickness, cell flexibility, and motility. [33] Bacteria are known to evolve specific traits to survive in their ideal environment. [34]
The increased cell length can protect bacteria from protozoan predation and neutrophil phagocytosis by making ingestion of cells more difficult. [1] [3] [4] [5] Filamentation is also thought to protect bacteria from antibiotics, and is associated with other aspects of bacterial virulence such as biofilm formation. [6] [7]
Phenotypic plasticity refers to some of the changes in an organism's behavior, morphology and physiology in response to a unique environment. [1] [2] Fundamental to the way in which organisms cope with environmental variation, phenotypic plasticity encompasses all types of environmentally induced changes (e.g. morphological, physiological, behavioural, phenological) that may or may not be ...
How cells grow and elongate has been extensively reviewed in model organisms of both, rod-shaped [36] [37] and coccoid bacteria. [38] The molecular basis for morphological plasticity and pleomorphism in more complex bacteria, however, is slowly being elucidated as well. [33] [8]
Brain plasticity refers to the brain's ability to change structure and function. [ 9 ] [ 10 ] This ties into the common phrase, "if you don't use it, you lose it," which is another way of saying, if you do not use it, your brain will devote less somatotopic space for it.
The bacterial DNA is not packaged using histones to form chromatin as in eukaryotes but instead exists as a highly compact supercoiled structure, the precise nature of which remains unclear. [6] Most bacterial chromosomes are circular, although some examples of linear chromosomes exist (e.g. Borrelia burgdorferi). Usually, a single bacterial ...
Bergey's Manual Trust was established in 1936 to sustain the publication of Bergey's Manual of Determinative Bacteriology and supplementary reference works. The Trust also recognizes individuals who have made outstanding contributions to bacterial taxonomy by presentation of the Bergey Award and Bergey Medal, jointly supported by funds from the Trust and from Springer, the publishers of the ...