Search results
Results From The WOW.Com Content Network
In statistics, Spearman's rank correlation coefficient or Spearman's ρ, named after Charles Spearman [1] and often denoted by the Greek letter (rho) or as , is a nonparametric measure of rank correlation (statistical dependence between the rankings of two variables).
A rank correlation coefficient measures the degree of similarity between two rankings, and can be used to assess the significance of the relation between them. For example, two common nonparametric methods of significance that use rank correlation are the Mann–Whitney U test and the Wilcoxon signed-rank test .
Rank correlation is a measure of the relationship between the rankings of two variables, or two rankings of the same variable: . Spearman's rank correlation coefficient is a measure of how well the relationship between two variables can be described by a monotonic function.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
Some correlation statistics, such as the rank correlation coefficient, are also invariant to monotone transformations of the marginal distributions of X and/or Y. Pearson/Spearman correlation coefficients between X and Y are shown when the two variables' ranges are unrestricted, and when the range of X is restricted to the interval (0,1).
Spearman's rank correlation coefficient: measures statistical dependence between two variables using a monotonic function. Squared ranks test: tests equality of variances in two or more samples. Tukey–Duckworth test: tests equality of two distributions by using ranks.
The common measure of dependence between paired random variables is the Pearson product-moment correlation coefficient, while a common alternative summary statistic is Spearman's rank correlation coefficient. A value of zero for the distance correlation implies independence.
Charles Edward Spearman, FRS [1] [3] (10 September 1863 – 17 September 1945) was an English psychologist known for work in statistics, as a pioneer of factor analysis, and for Spearman's rank correlation coefficient.