Search results
Results From The WOW.Com Content Network
For example, if the summands are uncorrelated random numbers with zero mean, the sum is a random walk, and the condition number will grow proportional to . On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n → ∞ {\displaystyle n\to \infty } .
Pseudocode is commonly used in textbooks and scientific publications related to computer science and numerical computation to describe algorithms in a way that is accessible to programmers regardless of their familiarity with specific programming languages.
For example, if the summands x i are uncorrelated random numbers with zero mean, the sum is a random walk and the condition number will grow proportional to . On the other hand, for random inputs with nonzero mean the condition number asymptotes to a finite constant as n → ∞ {\displaystyle n\to \infty } .
Let A be the sum of the negative values and B the sum of the positive values; the number of different possible sums is at most B-A, so the total runtime is in (()). For example, if all input values are positive and bounded by some constant C , then B is at most N C , so the time required is O ( N 2 C ) {\displaystyle O(N^{2}C)} .
When that occurs, that number is the GCD of the original two numbers. By reversing the steps or using the extended Euclidean algorithm, the GCD can be expressed as a linear combination of the two original numbers, that is the sum of the two numbers, each multiplied by an integer (for example, 21 = 5 × 105 + (−2) × 252).
Another example is a pseudocode implementation of addition, showing how to calculate a sum of two integers a and b using bitwise operators and zero-testing: while a ≠ 0 c ← b and a b ← b xor a left shift c by 1 a ← c return b
Below pseudocode describes the process of above multiplication. It keeps only one row to maintain the sum which finally becomes the result. Note that the '+=' operator is used to denote sum to existing value and store operation (akin to languages such as Java and C) for compactness.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.