Search results
Results From The WOW.Com Content Network
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Lists of physics equations. In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
t. e. Newton's law of universal gravitation states that every particle attracts every other particle in the universe with a force that is proportional to the product of their masses and inversely proportional to the square of the distance between their centers. Separated objects attract and are attracted as if all their mass were concentrated ...
Fluid dynamics. In fluid dynamics, the continuity equation states that the rate at which mass enters a system is equal to the rate at which mass leaves the system plus the accumulation of mass within the system. [1][2] The differential form of the continuity equation is: [1] where. u is the flow velocity vector field.
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
Calculus is of vital importance in physics: many physical processes are described by equations involving derivatives, called differential equations. Physics is particularly concerned with the way quantities change and develop over time, and the concept of the "time derivative" — the rate of change over time — is essential for the precise ...
Boltzmann equation. Borda–Carnot equation. Burgers' equation. Darcy–Weisbach equation. Dirac equation. Dirac equation in the algebra of physical space. Dirac–Kähler equation. Doppler equations. Drake equation (aka Green Bank equation)
Each propagates at generally different speeds determined by the important function called the dispersion relation. The use of the explicit form ω ( k ) is standard, since the phase velocity ω / k and the group velocity d ω /d k usually have convenient representations by this function.