Search results
Results From The WOW.Com Content Network
A typical flow battery consists of two tanks of liquids which are pumped past a membrane held between two electrodes. [1]A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a membrane.
Similar to regular modern redox flow cells, nanoFlowcell produces electricity from liquids. nanoFlowcell insists that the electrolyte solution is not common salt water as commonly stated in several internet forums and automotive press, claiming that the electrolyte solution they named bi-ION consist of a conductive liquid - organic and inorganic salts dissolved in water - and the electrolytes ...
Electrofuels are hydrocarbons that are artificially synthesized from hydrogen and carbon dioxide. Carbon dioxide can be extracted from three different sources: from ambient air (direct air capture), from point sources such as power plants (carbon capture and utility) or from biomass.
Nanoelectrodes are tiny electrodes made of metals or semiconducting materials having typical dimensions of 1-100 nm. Various forms of nanoelectrodes have been developed taking advantage of the different possible fabrication techniques: among the most studied are the nanoband, disk, hemispherical, nanopore geometries as well as the different forms of carbon nanostructures.
Nanoelectrofuel-based flow batteries ((NFB) have been claimed to store 15 to 25 times as much energy as traditional flow batteries. The Strategic Technology Office of the U.S. Defense Advanced Research Projects Agency (DARPA) is exploring military’s deployment of NFB in place of conventional lithium-ion batteries .
A battery converts chemical energy to electrical energy and is composed of three general parts: Anode (positive electrode); Cathode (negative electrode); Electrolyte; The anode and cathode have two different chemical potentials, which depend on the reactions that occur at either terminus.
Scheme of a molten-carbonate fuel cell. Molten-carbonate fuel cells (MCFCs) are high-temperature fuel cells that operate at temperatures of 600 °C and above.. Molten carbonate fuel cells (MCFCs) were developed for natural gas, biogas (produced as a result of anaerobic digestion or biomass gasification), and coal-based power plants for electrical utility, industrial, and military applications.
The Nano electrokinetic thruster is a theoretical space propulsion system based on the principle of electro-osmosis (also electroosmotic flow). It allows for a high specific impulse and high thrust-to-power ratio as well as a high final velocity which makes it suitable for a wide variety of applications.