Search results
Results From The WOW.Com Content Network
Although the pigeonhole principle appears as early as 1624 in a book attributed to Jean Leurechon, [2] it is commonly called Dirichlet's box principle or Dirichlet's drawer principle after an 1834 treatment of the principle by Peter Gustav Lejeune Dirichlet under the name Schubfachprinzip ("drawer principle" or "shelf principle").
This theorem is a consequence of the pigeonhole principle. Peter Gustav Lejeune Dirichlet who proved the result used the same principle in other contexts (for example, the Pell equation) and by naming the principle (in German) popularized its use, though its status in textbook terms comes later. [2] The method extends to simultaneous ...
For instance, the pigeonhole principle is of this form. Secondly, while Ramsey theory results do say that sufficiently large objects must necessarily contain a given structure, often the proof of these results requires these objects to be enormously large – bounds that grow exponentially, or even as fast as the Ackermann function are not ...
Consider the following theorem (which is a case of the pigeonhole principle): If three objects are each painted either red or blue, then there must be at least two objects of the same color. A proof: Assume, without loss of generality, that the first object is red.
He first used the pigeonhole principle, a basic counting argument, in the proof of a theorem in diophantine approximation, later named after him Dirichlet's approximation theorem. He published important contributions to Fermat's Last Theorem, for which he proved the cases n = 5 and n = 14, and to the biquadratic reciprocity law. [3]
In mathematics, the incompressibility method is a proof method like the probabilistic method, the counting method or the pigeonhole principle.To prove that an object in a certain class (on average) satisfies a certain property, select an object of that class that is incompressible.
Bijective proofs are utilized to demonstrate that two sets have the same number of elements. The pigeonhole principle often ascertains the existence of something or is used to determine the minimum or maximum number of something in a discrete context. Many combinatorial identities arise from double counting methods or the method of ...
The name "Dirichlet's principle" is due to Bernhard Riemann, who applied it in the study of complex analytic functions. [1]Riemann (and others such as Carl Friedrich Gauss and Peter Gustav Lejeune Dirichlet) knew that Dirichlet's integral is bounded below, which establishes the existence of an infimum; however, he took for granted the existence of a function that attains the minimum.