Search results
Results From The WOW.Com Content Network
In modern geometry, Euclidean spaces are often defined by using vector spaces. In this case, the dot product is used for defining lengths (the length of a vector is the square root of the dot product of the vector by itself) and angles (the cosine of the angle between two vectors is the quotient of their dot product by the product of their ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 9 February 2025. Computer graphics images defined by points, lines and curves This article is about computer illustration. For other uses, see Vector graphics (disambiguation). Example showing comparison of vector graphics and raster graphics upon magnification Vector graphics are a form of computer ...
When scaling a vector graphic image, the graphic primitives that make up the image can be scaled using geometric transformations with no loss of image quality. When scaling a raster graphics image, a new image with a higher or lower number of pixels must be generated. In the case of decreasing the pixel number (scaling down), this usually ...
A number of vector graphics editors exist for various platforms. Potential users of these editors will make a comparison of vector graphics editors based on factors such as the availability for the user's platform, the software license, the feature set, the merits of the user interface (UI) and the focus of the program. Some programs are more ...
The dotted vector, in this case B, is differentiated, while the (undotted) A is held constant. The utility of the Feynman subscript notation lies in its use in the derivation of vector and tensor derivative identities, as in the following example which uses the algebraic identity C⋅(A×B) = (C×A)⋅B:
The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .
The most noteworthy property of cosine similarity is that it reflects a relative, rather than absolute, comparison of the individual vector dimensions. For any positive constant and vector , the vectors and are maximally similar. The measure is thus most appropriate for data where frequency is more important than absolute values; notably, term ...
Each iteration of the Sierpinski triangle contains triangles related to the next iteration by a scale factor of 1/2. In affine geometry, uniform scaling (or isotropic scaling [1]) is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all directions (isotropically).