Search results
Results From The WOW.Com Content Network
It is also an SI derived unit of molar thermodynamic energy defined as the energy equal to one joule in one mole of substance. [1] [2] For example, the Gibbs free energy of a compound in the area of thermochemistry is often quantified in units of kilojoules per mole (symbol: kJ·mol −1 or kJ/mol), with 1 kilojoule = 1000 joules. [3]
As typically measured, one kcal/mol represents a temperature increase of one degree Celsius in one liter of water (with a mass of 1 kg) resulting from the reaction of one mole of reagents. In SI units , one kilocalorie per mole is equal to 4.184 kilojoules per mole (kJ/mol), which comes to approximately 6.9477 × 10 −21 joules per molecule ...
The activation energy (E a) of a reaction is measured in kilojoules per mole (kJ/mol) or kilocalories per mole (kcal/mol). [2] Activation energy can be thought of as the magnitude of the potential barrier (sometimes called the energy barrier) separating minima of the potential energy surface pertaining to the initial and final thermodynamic ...
, , and are the usual agents of a chemical equation with coefficients and is a positive or negative numerical value, which generally has units of kJ/mol. Another equation may include the symbol to denote energy; 's position determines whether the reaction is considered endothermic (energy-absorbing) or exothermic (energy-releasing).
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
The electronvolt is divided by the Boltzmann constant to convert to the Kelvin scale: / = = , where k B is the Boltzmann constant. The k B is assumed when using the electronvolt to express temperature, for example, a typical magnetic confinement fusion plasma is 15 keV (kiloelectronvolt), which is equal to 174 MK (megakelvin).
These tables list values of molar ionization energies, measured in kJ⋅mol −1. This is the energy per mole necessary to remove electrons from gaseous atoms or atomic ions. The first molar ionization energy applies to the neutral atoms.
For a fuel of composition C c H h O o N n, the (higher) heat of combustion is 419 kJ/mol × (c + 0.3 h − 0.5 o) usually to a good approximation (±3%), [2] [3] though it gives poor results for some compounds such as (gaseous) formaldehyde and carbon monoxide, and can be significantly off if o + n > c, such as for glycerine dinitrate, C 3 H 6 ...