Search results
Results From The WOW.Com Content Network
Hydrogen is a chemical element; it has symbol H and atomic number 1. It is the lightest element and, at standard conditions, is a gas of diatomic molecules with the formula H 2, sometimes called dihydrogen, [11] hydrogen gas, molecular hydrogen, or simply hydrogen. It is colorless, odorless, [12] non-toxic, and highly combustible.
For example, a crystal, viewed as a lattice with a single kind of atom located at every lattice point (the simplest basis form), may also be viewed as a lattice with a basis of two atoms. In this case, a primitive unit cell is a unit cell having only one lattice point in the first way of describing the crystal in order to ensure the smallest ...
The concept of lattice energy was originally applied to the formation of compounds with structures like rocksalt and sphalerite where the ions occupy high-symmetry crystal lattice sites. In the case of NaCl, lattice energy is the energy change of the reaction Na + (g) + Cl − (g) → NaCl (s) which amounts to −786 kJ/mol. [2]
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
The honeycomb point set is a special case of the hexagonal lattice with a two-atom basis. [1] The centers of the hexagons of a honeycomb form a hexagonal lattice, and the honeycomb point set can be seen as the union of two offset hexagonal lattices. In nature, carbon atoms of the two-dimensional material graphene are arranged in a honeycomb ...
In theoretical and computational chemistry, a basis set is a set of functions (called basis functions) that is used to represent the electronic wave function in the Hartree–Fock method or density-functional theory in order to turn the partial differential equations of the model into algebraic equations suitable for efficient implementation on a computer.
The first Brillouin zone is the locus of points in reciprocal space that are closer to the origin of the reciprocal lattice than they are to any other reciprocal lattice points (see the derivation of the Wigner–Seitz cell). Another definition is as the set of points in k-space that can be reached from the origin without crossing any Bragg plane.
A lattice in which the conventional basis is primitive is called a primitive lattice, while a lattice with a non-primitive conventional basis is called a centered lattice. The choice of an origin and a basis implies the choice of a unit cell which can further be used to describe a crystal pattern.