When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Eulerian path - Wikipedia

    en.wikipedia.org/wiki/Eulerian_path

    An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once

  3. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Euler's argument shows that a necessary condition for the walk of the desired form is that the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now called an Eulerian trail or Euler walk in his honor ...

  4. Hamiltonian path - Wikipedia

    en.wikipedia.org/wiki/Hamiltonian_path

    An Eulerian graph G (a connected graph in which every vertex has even degree) necessarily has an Euler tour, a closed walk passing through each edge of G exactly once. This tour corresponds to a Hamiltonian cycle in the line graph L(G), so the line graph of every Eulerian graph is Hamiltonian.

  5. Cycle basis - Wikipedia

    en.wikipedia.org/wiki/Cycle_basis

    The symmetric difference of two cycles is an Eulerian subgraph. In graph theory, a branch of mathematics, a cycle basis of an undirected graph is a set of simple cycles that forms a basis of the cycle space of the graph.

  6. de Bruijn sequence - Wikipedia

    en.wikipedia.org/wiki/De_Bruijn_sequence

    The de Bruijn sequences can be constructed by taking a Hamiltonian path of an n-dimensional de Bruijn graph over k symbols (or equivalently, an Eulerian cycle of an (n − 1)-dimensional de Bruijn graph). [5] An alternative construction involves concatenating together, in lexicographic order, all the Lyndon words whose length divides n. [6]

  7. Chinese postman problem - Wikipedia

    en.wikipedia.org/wiki/Chinese_postman_problem

    When the graph has an Eulerian circuit (a closed walk that covers every edge once), that circuit is an optimal solution. Otherwise, the optimization problem is to find the smallest number of graph edges to duplicate (or the subset of edges with the minimum possible total weight) so that the resulting multigraph does have an Eulerian circuit. [1]

  8. Glossary of graph theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_graph_theory

    An Eulerian circuit (also called an Eulerian cycle or an Euler tour) is a closed walk that uses every edge exactly once. An Eulerian graph is a graph that has an Eulerian circuit. For an undirected graph, this means that the graph is connected and every vertex has even degree.

  9. Cycle space - Wikipedia

    en.wikipedia.org/wiki/Cycle_space

    However, for the purposes of defining cycle spaces, an Eulerian subgraph does not need to be connected; for instance, the empty graph, in which all vertices are disconnected from each other, is Eulerian in this sense. The cycle space of a graph is the collection of its Eulerian spanning subgraphs. [1] [2]